
Teaching LLMs to Understand Business Documents
AI Days 2024 - 25/01/2024 - Tomáš Tunys (tomas.tunys@rossum.ai)

Context: Rossum Mission

A person to handle a million transactions in a year.
Source: https://xkcd.com

/2565
* D

is
cl

ai
m

er
: A

I m
ay

 o
r

m
ay

 n
ot

 h
av

e
b

ee
n

 u
se

d
 to

 g
en

er
at

e
th

is
 im

ag
e.

Problem: Key Information Localisation & Extraction

Problem: Key Information Localisation & Extraction

Approach: Our ML Pipeline to Solve KILE

Step 1: OCR Step 2: Embedding Step 3: Classification

Approach: Our ML Pipeline to Solve KILE

Step 1: OCR Step 2: Embedding Step 3: Classification

Step 1: OCR
“That’s 40-year old problem that is solved”

– our beginnings at StartupYard (2016)

Text Localisation: variant of DBNet
(github:open-mmlab/mmocr)

Text Detection: variant of OCkRE
(github:rossumai/OCkRE)

Training Data: Use PDFs + PDF parser
(pypi:python-poppler)

Rossum history remark
● We used to crawl the Internet and scrape

Uloz.to for PDF documents to train our first
version of OCkRE.

Step 1: OCR

https://github.com/open-mmlab/mmocr
https://github.com/rossumai/OCkRE
https://pypi.org/project/python-poppler/

Step 2: Embedding
Turning Layout and Text information into vectors
encoding semantic meaning.

Variant of LLM inspired by models like hf:BERT/RoBERTa,
hf:LayoutXLM, hf:UDOP.

● Encoder: “embedding quality control”
○ MLM pre-training in distribution documents.
○ Use layout (bounding boxes) during training.

● Decoder: “enhancing embeddings”
○ Its training is optional.
○ MVM - filling the “blanks” in the covered parts

of the document.

https://huggingface.co/docs/transformers/model_doc/roberta
https://huggingface.co/docs/transformers/model_doc/layoutlmv3
https://huggingface.co/ZinengTang/Udop

Step 2: LLM Pre-training via M(V)LM

DATASET

(“INVOICE”, [476, 295, 618, 326]),
(“VENDOR”, [475, 420, 533, 433]),
(“DETAILS”, [534, 418, 591, 434]),
(“DATE”, [1134, 456, 1175, 471]),
...

Step 2: LLM Pre-training via M(V)LM

DATASET - TRAINING BATCH

([MASKED], [476, 295, 618, 326]),
(“VENDOR”, [475, 420, 533, 433]),
(“DETAILS”, [???, ???, ???, ???]),
(“DATE”, [1134, 456, 1175, 471]),
...

[MASKED]

Masked

Masked

TRAINING OBJECTIVE: “Fill in the blanks”

Step 2: LLM Pre-training via M(V)LM

Step 3: Classification
LLM turns (localised) text into vectors encoding semantic meaning.

Here we can lean on vast collection of classic ML models: SVM,
LogisticRegression, etc.
● One of the go-to libraries in Python: pypi:scikit-learn

Dataset: human-annotated documents - e.g. Rossum UI (Slide 4)
● Data points are (field type, location, text).
● This are turned using LLMs into “classical” dataset of 2-tuples:

○ (embedding vector, class/number representing the field type)

Pre-training and Classification can be trained jointly → no need for
separate model… has also other advantages.

https://pypi.org/project/scikit-learn/

Training: Self-supervised vs Supervised

Self-supervised training
Train to predict missing data on
millions of pages of (unlabelled)
documents.

detected & extracted text

Embedding =
Transformer internal
representation of the
detected text.

Supervised training
Training across many datasets of
annotated documents: Rossum
datasets, customers annotated
documents.

amount_subtotal

amount_tax

amount_total

Foundation Transformer Task-specific model

Reflection: Discriminative vs Generative AI
Reading an invoice is discriminative task:

{
“InvId”: “99999999”,
“Due”: “$4,505.49”,
“Rcpt”: “Philip Morris”,

}

“Specialist”
- Fixed to a particular task (e.g. set of fields)
- Efficient & effective
- Less prone to simple mistakes

“Generalist”
- Creative (but can invent nonsense)
- Versatile, handles the unexpected
- Deeper understanding of reality

> Who is the recipient?
> Philip Morris Valued Customer

> How much is due?
> Balance due is $4,505.49

Reading an invoice as generative task:

Ups… That’s not All for the End-to-End Automation.
For practical purposes of any AI – the model
needsto be able to express the level of
confidence in its predictions.

One way to tackle this is to make the final
model predictions calibrated.

Luckily, this can be reduced to a classical AI
problem (see Probability calibration
@scikit-learn)

https://scikit-learn.org/stable/modules/calibration.html

What are the Results / Impact of Rossum LLMs?

Coming Soon…

Register on https://rossum.ai/rossum-aurora-launch-webinar/

https://rossum.ai/rossum-aurora-launch-webinar/

Software & Hardware

Software & Hardware

2017 - We Launch Rossum

“7GForce” - Our GPU “cluster”:

● 4x GeForce GTX 1080Ti
● 3x GeForce GTX 1070
● 40 CPUs / 128 GB RAM

All technology up to the “LLM era” Rossum could
have been built using this.

● Prioritisation of experiments would be the
challenge.

● True to be told, we’ve been also using AWS
a lot.

2018 - We grow and so does our compute.

Adding 4 “Ry-cka” to our “cluster”:

● 12x GeForce GTX 1070
● 4x GeForce GTX 1080Ti
● 16 CPUs / 64 GB (each)

= 23 GPUs in total.

Has been enough for us until “recently” → LLMs
started.

Software & Hardware

2022 - 2023 - Latest upgrades to our
cluster for the “LLM era”:

Adding “Helena”:

● 8x A100 GPUs
● 128 CPUs / 2T RAM

Adding “Sulla:

● 8x RTX 6000 Ada
● 128 CPUs / 2T RAM

Software & Hardware

Software & Hardware - when things go wrong :/

Takeaways

ML Pipeline for Key Information Localisation and Extraction
● 4 Stages: OCR → LLM → Classification → Calibration
● Can be built on top of open-source software and models:

○ Data can be a challenge for fine-tuning, not for pre-training of LLMs.
○ Compute can be a challenge:

■ But you can go far with “relatively” little.
■ Modern fine-tuning techniques exist (leverage the open-source!)

● How LLMs are trained and how it works.
● What are pros and cons of Discriminative vs Generative approaches.

What is possible when this is put in practice?
● Come to see us at our Rossum Aurora Product Launch

https://rossum.ai/rossum-aurora-launch-webinar/

Thank you

