

Al Acceleration with NVIDIA

Dr. Arts Yang, Sr. Product Architect DGX & Cloud

arts@nvidia.com

Al DAYS in Prague

25. Jan. 2024

The In-Person GTC Experience Is Back

Come to GTC—the conference for the era of Al—to connect with a dream team of industry luminaries, developers, researchers, and business experts shaping what's next in Al and accelerated computing.

From the highly anticipated keynote by NVIDIA CEO Jensen Huang to over 600 inspiring sessions, 200+ exhibits, and tons of networking events, GTC delivers something for every technical level and interest area.

Be sure to save your spot for this transformative event. You can even take advantage of early-bird pricing when you register by February 7.

March 18-21, 2024 | www.nvidia.com/gtc

Generative Al

The iPhone moment of Al

What's the Hype!

Generative Al is here

Key Players

Generative AI Possibilities

Generative Al is Having a Moment!

Captivating World's Attention | Happening Fast | Solving Problems in a Way Never Done Before

Benefits of Generative Al on Various Business

Generative AI is transforming every industries

Generative Al Risks

Challenges/Limitations of Generative Al

Data Privacy & Security

IP Rights & Copyright

Biases,
Errors,
&
Limitations

Ethical Implication

Malevolent Activities

NVIDIA AI Foundations

NEMO BIONEMO PICASSO

NVIDIA AI ENTERPRISE

NVIDIA DGX Cloud

The iPhone Moment of Al is Here

Every major application and workflow is going to include Al

CHATBOTSFastest Growing Application Ever

GENERATIVE ARTOver 200M+ Users

AI-AUGMENTED APPLICATIONS

ISVs Accelerating AI Integration

Al Playground on NGC

Experience Top Generative Al Models via Simple Web Ul

Explore top NVIDIA & OSS AI models on NGC

Experience on DGX Cloud via Al Playground

One-click install to RTX PC

Fine tune with AI Workbench

DGX Cloud

Windows RTX PC/WS

Al Playground on NGC

Demo

Populating 3D Worlds With Generative Al

Adobe Photoshop Example

Adding Content with Generative Fill

Generative Al Transforming Workflows Across Industries

Architecture

Product Design

Film / Video

3D FX / Game Dev

Marketing

Photography

September Early Access for NVIDIA AI Workbench

Announcing at SIGGRAPH

- New development platform for data scientists & AI/ML engineers
- Brings Gen Al development to RTX GPUs on PCs & Linux
- Streamlines NVIDIA HW & SW for a broad audience
- Integrates with NGC, GitHub & Hugging Face
- One-click push of local work into DGX Cloud
- Easy hybrid deployment on local machines & clouds
- Free and available for self-service install from NGC
- EA starting in September

NVIDIA AI Enterprise

End to end Al software

- Cloud Native, Hybrid Optimized
- Enterprise Grade OSS Components
- Secure And Scalable
- Technical Standard Support 9 X 5, Premium 24x7

NVIDIA AI

End-to-end open platform for production Al

Productivity with Base Command

Enterprises tools that drive the value of AI investment

DGX H100 SuperPOD NVIDIA Reference Architectures

Introducing Base Command Manager Essentials

Purpose-built for Enterprise Al Infrastructure Management

Infrastructure Provisioning

Maintain a secure, up-todate, and reliable Al infrastructure

Workload Management

Easily provide data scientists with all the tools and resources they need

Resource Monitoring

Get detailed data for informed decision-making

Data Center

Cloud

Powerful Image Management and Cluster Configuration

Greatly increases admin productivity and prevents configuration drift

NVIDIA Hopper

The Engine for the World's Al Infrastructure

World's Most Advanced Chip

Transformer Engine

2nd Gen MIG

Confidential Computing

4th Gen NVLink

DPX Instructions

H100 SXM

H100 PCIE

NVIDIA H100

Unprecedented Performance, Scalability, and Security for Every Data Center

Highest AI and HPC Performance

4PF FP8 (6X) | 2PF FP16 (3X) | 1PF TF32 (3X) | 60TF FP64 (3.4X) 3.35TB/s (1.5X), 80GB HBM3 memory

Transformer Model Optimizations

6X faster on largest transformer models

Highest Utilization Efficiency and Security

7 Fully isolated & secured instances, guaranteed QoS 2nd Gen MIG | Confidential Computing

Fastest, Scalable Interconnect

900 GB/s GPU-2-GPU connectivity (1.5X) 128GB/s PCI Gen5

Delivering the AI Center of Excellence for Enterprise

Best-of-breed infrastructure for AI development built on NVIDIA DGX

NVIDIA DGX H100

The World's Proven Choice for Enterprise Al

8x NVIDIA H100 GPUs | 32 PFLOPS FP8 (6X) | 0.5 PFLOPS FP64 (3X) 640 GB HBM3 | 3.6 TB/s (1.5X) BISECTION B/W

4th Generation of the World's Most Successful Platform Purpose-Built for Enterprise Al

DGX SuperPOD WITH DGX H100

32 DGX H100 | 1 EFLOPS AI QUANTUM-2 IB | 20TB HBM3 | 70 TB/s BISECTION B/W (11X)

1 ExaFLOPS of AI Performance in 32 Nodes Scale as Large as Needed in 32 Node Increments

NVIDIA L40S

The highest performance universal GPU for AI, graphics, and video

LLM Fine Tuning

8 hours

Llama 2-70B 1 Billion Tokens¹

LLM 1st Token Latency

<30 ms

Llama 2-13B Inference 225/20²

Small LLM Training

3 days

Llama 2-7B 100 Billion Tokens³

Image Gen Al

>82

Images per Minute⁴

LLM E2E Latency

<0.5 s

Llama 2-13B Inference 225/20⁵

Full Video Pipeline

184

AV1 Encode Streams⁶

Preliminary performance, subject to change

1. Fine-Tuning Llama 2-70B SFT, 1 Billion Tokens; 64x L40S (simulated).

2. Llama 2-13B, ISL=225, OSL=20, BS=1, FP8, 1x L40S. 1st Token Latency.

3. Llama 2-7B, 100 Billion Tokens; 64x L40S (simulated).

4. Image Generation, Stable Diffusion v2.1, 50 iterations, 512 x 512 resolution; 1x L40S.

5. Llama 2-13B, ISL=225, OSL=20, BS=1, FP8, 1x L40S. E2E Latency.

6. Concurrent Encoding Streams; 720p30; 1x L40S.

L40S Generates > 82 Images/min for Image Gen Al Inference

Incredible Performance Across Different Image Sizes and Resolutions

NVIDIA Grace for Cloud, Al and HPC Infrastructure

Grace CPU Superchip

CPU Computing

CPU-based applications where absolute performance, energy efficiency, and data center density matter, such as scientific computing, data analytics, enterprise and hyperscale computing applications

GH200 Grace Hopper Superchip

Large Scale AI & HPC

Accelerated applications where CPU performance and system memory size and bandwidth are critical; tightly coupled CPU & GPU for flagship AI & HPC. Most versatile compute platform for scale out.

NVIDIA GH200 Grace Hopper Superchip

Built for the New Era of Accelerated Computing and Generative Al

Most versatile compute

Best performance across CPU, GPU or memory intensive applications

Easy to deploy and scale out

1 CPU:1 GPU node simple to manage and schedule for for HPC, enterprise, and cloud

Best Perf/TCO for diverse workloads

Maximize data center utilization and power efficiency

Continued Innovation

Grace and Hopper-Next in 2024

900GB/s NVLink-C2C | 624GB High-Speed Memory 4 PF AI Perf | 72 Arm Cores

NVIDIA GH200 Grace Hopper Superchip

Processor For The Era of Accelerated Computing And Generative Al

72 Core Grace CPU | 4 PFLOPS Hopper GPU 96 GB HBM3 | 4 TB/s | 900 GB/s NVLink-C2C

- 7X bandwidth to GPU vs PCIe Gen 5
- Combined 576 GB of fast memory
- 1.2x capacity and bandwidth vs H100
- Full NVIDIA Compute Stack

72 Core Grace CPU | 4 PFLOPS Hopper GPU 144 GB HBM3e | 5 TB/s | 900 GB/s NVLink-C2C

- World's first HBM3e GPU
- Combined 624 GB of fast memory
- 1.7x capacity and 1.5x bandwidth vs H100
- Full NVIDIA Compute Stack

144 Core Grace CPU | 8 PFLOPS Hopper GPU 288 GB HBM3e | 10 TB/s | 900 GB/s NVLink-C2C

- Simple to deploy MGX-compatible design
- Combined 1.2 TB fast memory
- 3.5x capacity and 3x bandwidth vs H100
- Full NVIDIA Compute Stack

GH200 with HBM3

Available for order

GH200 with HBM3e

Available Late Q2 2024

NVLink Dual GH200 System
Available Q2 2024

GH200 Grace Hopper Al Inference Platform

Versatile Scale Out with Unmatched Performance

Memory Intensive

GPU Intensive

Use Cases

LLM Conversational Al Domain Knowledge

Vector Database
Fraud Detection
Drug Discovery

Recommender Systems
eCommerce
Personalized Content

GNN
Computer Vison
Recommenders

NIC Network Interface Card

A network interface controller (a.k.a. network adapter) is a computer HW component that connects a computer to a computer network.

Early network interface controllers were commonly implemented on expansion cards that plugged into a computer bus...

Modern network interface controllers offer advanced features such as interrupt and DMA interfaces to the host processors, support for multiple receive and transmit queues, ...

https://en.wikipedia.org/wiki/Network_interface_controller

2019 ConnectX-6 200gE NIC

2007 ConnectX-EN 10gE NIC - First Ethernet NIC

2001 InfiniBridge 10g IB HCA - Mellanox First Host Channel Adapter (HCA)

Recommended Compute Nodes

NVIDIA DGX Systems & Qualified and Certified HGX H100 Servers

NVIDIA Networking Platforms

Accelerated Networking Solutions for the Era of Al

Supercomputing Networking Platform
Al Factories and Cloud-Native Supercomputing

Infrastructure Compute Platform
Offload, Accelerate, and Isolate Data Center Infrastructure

Hyperscale Networking Platform
Purpose-built Ethernet Networking for Al Clouds

TCP and Sockets

```
RFC: 793
                      TRANSMISSION CONTROL PROTOCOL
                          DARPA INTERNET PROGRAM
                          PROTOCOL SPECIFICATION
                              September 1981
                               prepared for
                Defense Advanced Research Projects Agency
                Information Processing Techniques Office
                         1400 Wilson Boulevard
                       Arlington, Virginia 22209
                                    by
                     Information Sciences Institute
                    University of Southern California
                   4676 Admiralty Way
Marina del Rey, California 90291
```

```
SocketFD = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
if (SocketFD == -1) {
 perror("cannot create socket");
  exit(EXIT_FAILURE);
memset(&sa, 0, sizeof sa);
sa.sin_family = AF_INET;
sa.sin_port = htons(1100);
 res = inet_pton(AF_INET, "192.168.1.3", &sa.sin_addr);
 if (connect(SocketFD, (struct sockaddr *)&sa, sizeof sa) == -1) {
  perror("connect failed");
  close(SocketFD);
  exit(EXIT_FAILURE);
 n = write(SocketFD,buffer,strlen(buffer));
if (n < 0)
    error("ERROR writing to socket");
 n = read(SocketFD,buffer,MAX_BUFFER_SIZE);
if (n < 0)
   error("ERROR reading from socket");
 shutdown(SocketFD, SHUT_RDWR);
 close(SocketFD);
```

RDMA – Remote DMA

InfiniBand and RoCE (RDMA over Converged Ethernet)

- Messages send/receive, remote DMA and remote atomics
- Hardware transport
- Kernel and hypervisor bypass

Advantages

- ► Lower latency 10us → 700ns
- ► Higher message rate 215M messages/s
- Lower CPU utilization 0%

RDMA enables Peer to Peer

GPU Direct

DOCA Host-based networking

Focus areas

- Controller-less VPC networking for BMaaS
- Accelerated Routing and EVPN on Host
- Simplifying underlay network fabric
 - End-to-end IP Fabric from the host
 - L3 ECMP to replace proprietary LAG/MLAG
- Advanced ToR switch features on DPU
 - Reduce risk with Whitebox deployments (SONiC, Switchdev)
 - Save on 3rd party switch feature licenses
- NVIDIA E2E value-add with Cumulus and HBN

NVIDIA Cumulus Apps on DPU

NetQ in Full Stack NVIDIA Solutions

Telemetry Data Collection, Network Monitoring and Troubleshooting

- Switch & DPU inventory
- Validations

- Metrics monitoring
- RoCE monitoring

- WJH and other events
- Trace & flow telemetry

- Network data collection
- APIs for integration

Getting Started with NVIDIA Reference Architectures

Reference Architecture Components

Compute Node

- HGX H100 8 GPUs Compute node design
- Ensures performance within the compute node

E-W Network

- 8-Rails-optimized, non-blocking fat tree IB topology
- Validated with 3 production generations of SuperPOD
- Highly scalable with large locality groups
- SharpV3 for multi tenancy
- Managed by UFM & BCM
- Easy to validate and operate

Tenant Access Network: N-S

- Each HGX has 2 x 200GbE BF3 connections to Leaf switches
- BF3 enables a true, zero-trust BMaaS
- Infrastructure isolation from the compute workload
- Enhanced security
- Storage offloaded and accelerated by BF3

High Speed Storage (HSS)

- Clear minimum recommended bandwidth for storage
- Optimized for best performance of LLM Training
- Enabling a choice of storage solutions
- Per POD or centralized HSS placement

Outer Ring Storage (Data Lake)

- Raw-data storage
- Minimal requirements for a Datalike storage
- Can be a unified solution with HSS

Out Of Band Management

- 1GbE management network
- Providing monitoring and management of all DC devices
- Enabling integration of different APIs between all devices

Flagship for Al Training

NVIDIA DGX SuperPOD with H100

Taking the "SuperPOD" to Cloud

NCP Reference Architecture

The Versatile Answer for Inference and Graphics

NVIDIA L40s Reference Architecture

New Option for Fine-Tuning and Inference

NVIDIA Reference Architecture with GraceHopper Superchip GH200

